

Lund Nano Lab

Lund Nano Lab

Introduction and Equipment Summary 2021-01-25

Lund Nano Lab (LNL)

- ISO 5/7 Class nanofabrication and metrology facility ٠
- Part of National cleanroom infrastructure, Myfab ٠
- Support from the university enables the lab to achieve the ٠ highest standards and maintain state-of-art equipment and for academic users to be subsidised
- Open access 24/7 for 140 active users (academic and ٠ commercial) booking 50 000 hours tool time each year
- All users are fully autonomous after completing a lab ٠ introduction and safety course and have acquired a tool specific license for operation
- 17 staff with expertise in equipment, IT, semi-conductor material ٠ fabrication and characterization of nano and micro structures

1/25/2021

Lund Nano Lab

3 **Wyfab** Lund Nano Lab

Lund Nano Lab Equipment Areas

Metrology/Characterization

Lithography

Growth

Special Equipment

Thin Films

NANOLUND 1/25/2021

Etching

Chemical Processing

Facility

Lithography

1/25/2021

- Raith Voyager EBL
- Raith 150 EBL
- Direct Laser Writer under Procurement
- Talbot Displacement Lithography (TDL)
 - Large area exposure by 3D diffraction by a repeated pattern on a phase shift mask
- Soft UV Mask Aligner
- Deep UV Mask Aligner
- Obducat Nano Imprint Lithography

Etch

- APEX SLR Inductively Coupled Plasma Reactive Ion Etch (ICP RIE) – F based
 - Etching Si, SiO₂, Si₃N₄, W, Mo and resists
- APEX SLR ICP RIE Cl based
 - Etching and atomic layer etching (ALE) of mostly III-V semiconductors
- Tepla Ion Wave 10 Plasma Asher
 - Isotropic etching of Si, SiO2, and resists
- Moorfield NanoEtch
 - Low power residual resist removal
- Trion Reactive Ion Etch (RIE)
 - Etching Si, SiO₂, Si₃N₄, W, Mo and resists

Lund Nano Lab

1/25/2021

Thin Films

- Temescal E-Beam Evaporator: Au, Ti, Ni, Al, Cr, Pd..
- AVAC Thermal Evaporator: Au, Al, Ni, NiCr, Pd, Zn..
- AJA RF/DC Sputter: ITO, TiN, Au, W, Ni, Ti, Al, Si
- Cambridge Analytical Savannah 100 Atomic Layer Deposition (ALD): AlO_x, HfO_x
- Cambridge Analytical Fiji 100 ALD: TiN, SiO_x, AlO_x
- Picosun ALD: ZrO_x, HfO_x, AlO_x in N₂ glovebox
- ALD for High k-dielectric under procurement
- Microsys Plasma Enhanced Chemical Vapour Deposition (PECVD): SiNx and SiO_x deposition

1/25/2021

Growth

1/25/2021

- Aixtron 200/4: Metal-Organic Vapor Phase Epitaxy (MOVPE)
 - III-V growth: arsenides, phosphides, and antimonides
- Aixtron CCS: MOVPE
 - III-V growth: arsenides
- Thomas Swan Nitride MOVPE
 - GaN, InGaN, AlGaN growth
- Epiquip MOVPE
 - III-V growth: arsenides and phosphides
- New MOVPE funding from Myfab

Metrology / Characterisation

- Bruker XRD:
 - High-angle, Reflectivity, Grazing incidence
- FEI NanoLab 600 FIB-SEM (Ga FIB)
- LEO SEM: General purpose imaging
- Hitachi SU8010 SEM:
 - General purpose imaging and in-situ electrical measurements
- Woollam Ellipsometer RC2
 - 210-2500 nm
 - Mapping capability with up to 200 mm sample
- Bruker Dektak stylus Profilometer:
 - 55 x 55 mm scan area, 2 um stylus
- Sun Simulator, Probe station and Quantum Efficiency (QUE)

1/25/2021

Metrology / Characterisation

ZEISS GeminiSEM 500:

- High resolution imaging
- Energy-dispersive X-ray ٠ spectroscopy (EDS)
- Electron backscatter diffraction (EBSD)
- **Back Scatter Electron** Detection (BSD)
- Scanning Transmission Electron Detection (STEM)

Bruker Icon AFM:

- Topography ٠
- **Electrical properties** ٠ (conductivity, potential, capacitance)
- Mechanical properties ٠

1/25/2021

Special Equipment

- Flash Lamp Annealer
 - 800C with 10 ms pulse duration
- Bondtech bonding Machine
 - Au or Al wire
- Logitek Chemical Mechanical Planariser
 - Under procurement
- Disco Dicer: Wafer dicer
- Rapid Thermal Processing oven
 - 150C /s in N₂, O₂ or N₂/H₂ mix

Lund Nano Lab (LNL)

- In 2020, the Dean of LTH initiated the procurement of a 1400 M² clean room to be located at Science Village
- Nano Lab Science Village (NLSV) is a strategic action of the NanoLund strategic plan
- Together with ESS and Max IV, the new Nano Lab at Science Village will form a third major infrastructure at Brunnshög
- The donor relationship group has a fund raising strategy in place for NLSV and has identified potential donors. The board of LU views this as a highly prioritised project.

Supporting Lund Nano Lab

Vetenskapsrådet

Stiftelsen för Strategisk Forskning

Lund Nano Lab

Implain Lund Nano Lab

Contacts and Links

Luke Hankin

Head of Lund Nano Lab (LNL)

luke.hankin@ftf.lth.se

Anders Kvennefors Deputy Head of LNL

anders.kvennefors@ftf.lth.se

NanoLund Home Page

Myfab Home Page

1/25/2021

Lund Nano Lab

14